
Mia-Marie Hammarlin
Universitetslektor

Cluster-Based BERTopic Modeling on Swedish COVID-19 Vaccine Posts
Författare
Redaktör
- John Mantas
- Arie Hasman
- George Demiris
- Kaija Saranto
- Michael Marschollek
- Theodoros N. Arvanitis
- Ivana Ognjanovic
- Arriel Benis
- Parisis Gallos
- Emmanouil Zoulias
- Elisavet Andrikopoulou
Summary, in English
This paper explores the prevalent themes across multiple threads on the popular Swedish discussion forum Flashback. Among its diverse array of topics, the forum actively engages users in addressing and debating questions pertaining to COVID-19 vaccines and vaccination. Through distinguishing between positive and negative perspectives within posts across 14 relevant thread discussions, we employ BERTopic, a modular topic modeling framework, which utilizes pre-trained language models and applies clustering techniques to identify prevailing topics. This enables us to conduct a nuanced exploration of overarching themes, offering valuable insights into the multifaceted nature of the discussions regarding COVID-19 vaccines and vaccination in Sweden.
Avdelning/ar
- Medie- och kommunikationsvetenskap
- Birgit Rausing Centrum för Medicinsk Humaniora (BRCMH)
- Journalistik
Publiceringsår
2024-08
Språk
Engelska
Sidor
1906-1910
Publikation/Tidskrift/Serie
Studies in Health Technology and Informatics
Volym
316
Dokumenttyp
Konferensbidrag
Förlag
IOS Press
Ämne
- Natural Language Processing
Nyckelord
- BERTopic
- Swedish dataset
- topic modeling
- vaccination
- vaccine
Conference name
34th Medical Informatics Europe Conference, MIE 2024
Conference date
2024-08-25 - 2024-08-29
Conference place
Athens, Greece
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 1879-8365
- ISSN: 0926-9630
- ISBN: 9781643685335